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We solve exactly the one-dimensional diffusion-limited single-species coagula- 
tion process (A+A--* A) with back reactions (A ~ A + A )  and/or a steady 
input of particles (B --* A). The exact solution yields not only the steady-state 
concentration of particles, but also the exact time-dependent concentration as 
well as the time-dependent probability distribution for the distance between 
neighboring particles, i.e., the interparticle distribution function (IPDF). The 
concentration for this diffusion-limited reaction process does not obey the classi- 
cal "mean-field" rate equation. Rather, the kinetics is described by a finite set of 
ordinary differential equations only in particular cases, with no such description 
holding in general. The reaction kinetics is linked to the spatial distribution of 
particles as reflected in the IPDFs. The spatial distribution of particles is totally 
random, i.e., the maximum entropy distribution, only in the steady state of the 
strictly reversible process A + A ~ A, a true equilibrium state with detailed 
balance. Away from this equilibrium state the particles display a static or 
dynamic self-organization imposed by the nonequilibrium reactions. The strictly 
reversible process also exhibits a sharp transition in its relaxation dynamics 
when switching between equilibria of different values of the system parameters. 
When the system parameters are suddenly changed so that the new equilibrium 
concentration is greater than exactly twice the old equilibrium concentration, 
the exponential relaxation time depends on the initial concentration. 
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1. I N T R O D U C T I O N  

Diffusion-reaction systems are those in which the reactants are transported 
by diffusion. (1'2) Two fundamental time scales characterize these systems: 
the diffusion time, which is the time that elapses between collisions of 
reacting particles, and the reaction time, the time that particles take to 
react when in proximity. If the reaction time is much larger than the diffu- 
sion time, the process is reaction limited. In this case the law of mass action 
holds and the kinetics of such systems is described by classical rate equa- 
tions. In recent years there has been an increasing interest in the less trac- 
table diffusion-limited processes, where the reaction time scale is negligible 
compared to the diffusion time. (3 8) Applications of diffusion-limited 
reactions include ionic recombination, electron-hole recombination in a 
variety of physical systems, and kinetics of processes occurring in 
atmospheric dust, colloids, micellar systems, and polymers in solution, to 
name just a few. In practice, any diffusion-reaction System may exhibit 
diffusion-limited behavior: as the concentration of the reactants decreases, 
the time between collisions of the reactants increases, and at very low 
concentrations, the diffusion time is larger than the characteristic reaction 
time, dominating the process in the absence of convective (or stirring) 
transport. 

For diffusion-limited processes the effect of self-stirring is negligible, 
the law of mass action does not hold, and a naive application of classical 
rate equations fails to describe the dynamics. Indeed, the usual derivation 
of classical rate equations either completely neglects the spatial distribution 
of reactants or only takes them into account through some kind of mean- 
field approximation. The kinetics of diffusion-limited reactions is often 
dominated by fluctuations, most notably spatial fluctuations in the concen- 
trations of the reactants (7-1~ and fluctuations in the number of particles 
involved, arising because of their individuality (fluctuations in number 
space). (11) In general, the starting point for analysis of such systems is a 
master equation for the state probability. Apart from very special cases, 
such master equations pose a formidable mathematical problem and some 
approximation techniques are needed. For example, fluctuations in number 
space may be approached with the help of Van Kampen's 1/O expan- 
sion.(3, t l) Scaling has proved useful in dealing with spatial inhomogeneities 
(see refs. 7 for reviews). Effective rate equations with nonclassical reaction 
terms have been put forward as a possible approximation (see refs. 12 for 
reviews). Needless to say, with such immense theoretical difficulties, 
numerical studies are of great importance and diffusion-limited systems are 
often modeled as cellular automata, where the diffusive transport is 
provided by a stochastic update rule. (13'14) 
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Most research to date in the area of diffusion-limited reactions has 
focused on the simplest reaction schemes, such as one-species coagulation, 
A + A ~ A, one-species annihilation, A + A --* inert, two-species annihila- 
tion, A + B ~ inert, and similar processes. (Refs. 7 reviews some of those. 
More complicated diffusion-reaction systems are modeled by cellular 
automata in ref. 14.) While some exact results exist, these are few in num- 
ber. In particular, very little is known about the microscopic spatial struc- 
ture of these systems, and this scarcity of exact solutions makes it difficult 
to evaluate the usefulness of various general approximations or approaches. 

In this paper we present the exact solution of a diffusion-limited 
coagulation process in one spatial dimension. These exact results clearly 
reveal the crucial role played by the spatial degrees of freedom in non- 
equilibrium processes. The model includes forward and back reactions, 
A + A -~ A, and A ~ A + A, respectively, and the possibility of a stochastic 
input of particles at a constant rate (B ~ A with B in excess). It is rich in 
its range of kinetic behavior, displaying in one case a dynamic "phase" 
transition. Moreover, the mathematical analysis of these nontrivial 
interacting particle systems is surprisingly simple--we reduce the problem 
to a linear partial differential equation--so that this example should serve 
as a basic model for the study of various phenomena in diffusion-reaction 
systems. This system should additionally prove useful both as a benchmark 
for Monte Carlo simulations and as a testing ground for various 
approximation and perturbation techniques currently in use. 

The simplest case of irreversible coagulation, A + A ~ A, is a non- 
equilibrium process with a trivial steady state (zero concentration of 
A-species particles). When input is included, one obtains a nontrivial 
steady state, albeit a nonequilibrium one. On the other hand, the reversible 
reaction A + A ~ A without input has an equilibrium stationary state. Our 
exact solution provides the concentration of particles as a function of time, 
including the approach to the various stationary states. The concentration 
always relaxes exponentially to the nonequilibrium steady state. For the 
reversible process we find a sharp transition in the dynamics of the 
approach to equilibrium, depending on the initial conditions, resulting 
from far-from-equilibrium spatial correlation effects. Additionally, the 
reversible reaction process can display a purely algebraic relaxation to the 
equilibrium state, as slowly as desired, depending explicitly on the spatial 
distribution of the particles. We also derive the exact probability density 
function for the distance between nearest particles. This gives us useful 
information on the microscopic spatial ordering of the system in various 
nonequilibrium situations. Based on these exact solutions, we discuss the 
applicability of effective rate equations for this system. 

The rest of this paper is organized as follows. In Section 2, we intro- 
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duce the diffusion-limited coagulation process in detail. For clarity, and to 
connect with cellular automata and numerical simulations, the process is 
described on a spatial lattice (but in continuous time). The concepts of 
interparticle distribution functions (IPDFs) and of other related statistical 
functions are presented, and a kinetic equation for the evolution of the 
system is derived. The spatial continuum limit is described at the end of 
Section 2. In Section 3 we present the general solution for the kinetic 
equation derived previously. We specialize this solution to specific cases of 
interest in the following sections: the completely irreversible reaction 
A + A--, A in Section 4; the same irreversible reaction, but with a steady 
input of particles in Section 5; and the reversible reaction A + A ~ A in 
Section 6. 

In Section 7 we discuss the question of rate equations for the kinetics 
of the Various limiting cases of the system. We find that rate equations 
apply only under very restricted conditions and that, in general, a different 
approach is needed. Our analysis is based on our knowledge of the 
microscopic ordering as reflected in the exact IDPFs. We include a discus- 
sion of some other diffusion-limited processes, the one-species annihilation 
process, and the point-particle coagulation model of particles with different 
"masses" in Section 8. Our discussion there is largely on a heuristic level 
supported by numerical simulations, as there are fewer exact results than 
for the coagulation process studied in this paper. We summarize and 
discuss our results, as well as some future directions for research, in 
Section 9. 

2. THE D I F F U S I O N - L I M I T E D  C O A G U L A T I O N  PROCESS 

Our model is a reversible one-dimensional coagulation process of 
point particles together with a steady input of particles. (15 17) The system is 
most easily defined on a lattice with lattice spacing Ax, with the continuum 
limit taken at a later stage. There are four different processes taking place, 
as described below. 

Diffusion. Particles move randomly to the nearest lattice site with a 
hopping rate 2D/(Ax) 2. The diffusion is symmetric, with rate D/(Ax) 2 to 
the right and D/(Ax) 2 to the left. On long length and time scales this yields 
normal diffusion with diffusion coefficient D. 

Birth. A particle gives birth to another at an adjacent site, at rate 
v/Ax. This means rate v/2Ax for birth on each side of the original particle. 
Notice that while v is a constant (with units of velocity), the rate v/Ax 
diverges in the continuum limit of Ax ~ 0. This is necessary because of the 
possible recombination of the newborn and the original particle, which also 
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takes place at an infinite rate when Ax ~ O. Symbolically, the birth process 
is A ~ A + A .  

Input. Any empty site spontaneously becomes occupied at proba- 
bility rate RAx. Here R is the average number of particles input per unit 
length, per unit time. 

Coagulation. When a particle lands on another through diffusion or 
bith, then it disappears. Symbolically, the coagulation process is 
A + A ~ A .  

Each of these processes--except coagulation takes place indepen- 
dently of the others. The various processes are illustrated in Fig. 1. 

To solve the system, it is useful to define E,(t),  the probability that a 
randomly chosen segment of n consecutive sites is empty, i.e., contains no 
particles. (16'17) The probability that a site is occupied is thus 1 - E 1  and the 
density, or concentration, of particles is expressed as 

c ( t )  = (1 - -  E 1 ) / z ~ x  (2 .1 )  

Notice that the coagulation process is realized by permitting at most one 
particle at any given site. 

E n gives the probability that, say, sites 1 through n are empty, while 
E ,  + ~ gives the probability that 1 through n + 1 are empty. The event that 
1 through n are empty contains the event that 1 through n + 1 are empty. 
Thus, the probability that a segment of n sites is empty, but that there is 
a particle at the adjacent site n +  1, is E , - E , + I .  

We construct a closed kinetic equation for the evolultion of the E, .  
Consider the changes in E ,  due to the different processes during a small 
time interval At: 

Diffusion. We may have an empty segment of n sites and site n + 1 
occupied, with the particle at site n + 1 moving into site n of the segment 

time t I # ] time t ', I * I I I 

timet+At I I r timet+At I i, r # I J 
(a) (b) 

Fig. 1. 

timet ~- ] I timet 

timer+At I # lj timet+At I I II ~" I I 
(c) (d) 

(a) Diffusion, (b) birth, (c) input, and (d) coagulation processes which take place in 
our reaction-diffusion system. 

822/60/5-6-12 
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in a short time interval 3t. This will decrease E,  by an amount 
D/(Ax)2(E,-  En+ 1)At. Likewise, we may have an empty segment of n -  1 
sites with a particle on the nth site. The end particle can move out to site 
n +  1, increasing E,  by an amount D/(Ax)Z(En_I-En) zJt. Putting these 
processes together, we get a rate of change of E ,  due to diffusion 

(a,E,)dirrusio, = 2 O (Ax) 2 (E, + ~ - 2E, + E,  -1) (2.2) 

The additional factor of 2 results from the fact that both processes can 
occur at either of the two ends of the segment independently. 

Input. The input of particles decreases the probability E ,  of having 
an empty interval of length n. Particles are input at a rate RAx per lattice 
site, so the rate of change due to input is 

(0,En)inpu t = - R n  dx E,, (2.3) 

The factor of n results from the fact that the rate of input to each of the 
n sites is independently Rdx. 

Birth. Particles adjacent to the end of an empty segment may give 
birth to a particle into the end site of the segment, decreasing E,  by 
(v/2Ax)(En-E,+I)At.  Since this can occur at either end of an empty 
interval, this process contributes 

v 
(QtE,)birt, = ~ x ( E , - E , + I )  (2.4) 

Coagulation. The coagulation reaction fixes the boundary condi- 
tions for En. To see this, consider changes in the number of particles in the 
system due to coagulation. The concentration decreases when two adjacent 
sites (say, 1 and 2) are both occupied and either of the two particles hops 
onto the other, thereby disappearing. The probability of having two 
adjacent sites occupied is 1 -  2E1 + E2, as illustrated in Fig. 2. Then, using 
the hopping probability and Eq. (2.1), 

D 
--~3tcAx = ~?tE1 = 2 ~ x  2 (1 - 2E 1 + E2) (2.5) 

P r o b ( ~ )  + Prob( - -~- )  + Prob(-~-F) + P r o b ( - H - )  = I 
1" I" 1" 

E1-E 2 El-E2 E2 
Fig. 2. Probability of having two adjacent sites occupied by particles. This is a necessary 

stage preceding coagulation and is used to determine the boundary condition (2.6). 
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To make this consistent with Eq. (2.2) for the case n = 1, we impose the 
boundary condition 

Eo = 1 (2.6) 

to account for coagulation. 
Combining all the different contributions to changes in E n, we get 

d , E n = 2  D (En - 2 E , + E , _ I ) -  v Ax 2 +1 ~x (E~- E,+ I ) -  Rn Ax E,, (2.7) 

with the boundary condition (2.6). An additional boundary condition is 
E~(t) = 0 for a nonzero population of particles. We may also consider the 
initial condition E , (0 )=  1 describing an empty system. (Note that E,  is a 
nonincreasing function of n.) 

We now pass to the continuum limit by defining the spatial coordinate 
x=nAx.  The probabilities En(t) are replaced by the function E(x, t). 
Letting Ax ~ O, we have Eq. (2.7)replaced by 

dE(x, t) OZE dE 
dt 2D-~x2 + V ~ x - R X E  (2.8) 

with boundary conditions E(0, t )=  1 and E ( ~ ,  t )=0 .  Once E(x, t) is 
obtained, the concentration of particles is derived using Eq. (2.1), which in 
the continuum limit becomes 

c(t) = OE(X,dx t) x=o (2.9) 

From E(x, t) we may also derive p(x, t), the probability density 
function for finding the nearest particle a distance x on one side of a given 
particle. We refer to this density as the interparticle distribution function 
(IPDF).(15 17) The relation between p and E is derived from the discrete 
representation, and we take the continuum limit at the very end. Let p,  be 
the probability that the nearest neighbor to (say, the right of) a given 
particle is n lattice spacings away. Thus, Pl is the probability that the 
nearest neighbor lies in the site next to the particle, P2 is the probability 
that the nearest neighbor is two sites away, etc. The Pn are normalized, 
Y: p , =  1, and the average distance between adjacent particles is the 
reciprocal of the concentration 

o~ 1 
(nAx>= ~ np, A z = -  (2.10) 

n ~ l  C 
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Choose a lattice site at random. The probability that the next n sites 
are empty En, may be expressed in terms of pn. The probability that the 
chosen point lies within a gap of length m is proportional to mpm, which 
can be ,normalized with the help of Eq. (2.10), yielding the probability 
distribution c Ax mpm. The probability that there are k lattice spacings 
until the next particle, given that the point is in the gap of length m, is 1/m 
if 1 ~< k<<.m, and 0 otherwise. Thus, the (unconditional) probability that 
there are exactly k lattice spacings to the next particle is 

m•_kmcAxmpm=cAx p,, (2.11) 
m = k  

Finally, the probability that the next n sites are empty, i.e., E,,  is the 
probability that k > n: 

E.=c Ax ~ ~ Pm (2.12a) 
k = n + l  m = k  

This can be inverted to yield 

c Ax Pn = En + 1 - 2En + E~_ 1 (2.12b) 

In the continuum limit these relations become 

E(x, t) = c(t) dx' dx" p(x", t) (2.13a) 

and 

~32E(x, t) 
c(t) p(x, t) = Ox 2 (2.13b) 

3. G E N E R A L  S O L U T I O N  

We now present with the general solution of Eq. (2.8). Expand E(x, t) 
in eigenfunctions of 

~32E~(x) . c3Ez(x) RxE~(x) (3.1) - 2 E z ( x ) = 2 D ~ +  - v  ~ 

Then E(x, t) is expressed as a linear combination of the eigenfunctions as 
E(x, t) = 52 a~E~(x)e -~t. Let 

Ez(x)  = r~(x)e-VX/"~' (3.2) 
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From Eq. (3.1) we obtain 

a2F (x) 
2D #x------y-- - [Rx + (vZ/8D - 2)] F;.(x) (3.3) 

This is Airy's equation, with the solution 

F;~(x) = Ai{ ( R / 2 D ) I / 3 x  4- (v2/8D - 2)/(2DR2) 1/3 } (3.4) 

Ai(z) is Airy's function, satisfying Ai" ( z )=ZAi ( z ) .  [The linearly inde- 
pendent solution Bi(z) is excluded because it grows faster than e ~x/4D as 
x -*  0% violating the boundary condition E--* 0 as x--, oo.] 

The steady-state solution is obtained from Eq. (3.4) by setting 2 = 0 
and using the boundary condition E(0, t )=  1, which translates to Fo(0) = 1. 
We find 

Eo(x) = e -~x/4D Ai{ (R/2D)I/3x + (vZ/8D)(2DR2) 1/3} 
Ai{(v2/gD)(ZDR 2) -1/3 } (3.5) 

From this we obtain the steady-state concentration using Eq. (2.9): 

( .e ~ 1/3 Ai,{ivZ/8D)(ZDR2)-I/3} 
c~ = 4---D - \ ~  } -~I { ( ~  } (3.6) 

In the above, Ai'(z) denotes the derivative of Ai(z). The steady-state inter- 
particle distribution function p , ( x )=  p(x, oo) may also be computed using 
c~ and Eq. (2.13b). 

The transient solutions correspond to 2 > 0. In this case the boundary 
condition E(0, t) = 1, combined with Fo(0) = 1, implies F;.(0) = 0 for 2 > 0. 
Applying this to Eq. (3.4), we find a discrete relaxation spectrum for non- 
vanishing R and D: 

"~n = V2/8D 4- (2DR2)  1/3 lanl (3.7) 

where a,, is the nth zero of the Airy function Ai(z). These zeros are 
all negative, and are tabulated in the literature.(~8) For example, 
a ~ = - 2 . 3 3 8 1  .... a2=-4.0879. . . ,  etc. The spectrum of eigenvalues is 
illustrated in Fig. 3. 

~0 ~I ~2 ~3 ~4 

0 
I 

v2/SD 
Fig. 3. Spectrum of eigenvatues 2~ for Eq. (3.1). The limit R--*0 is not trivial, because 

spectrum appears in the gap (0, vZ/8D) (see Section 6). 
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In the next three sections we study some specific limits of  the process: 
the irreversible process A + A --, A (R = v = 0), the irreversible process 
A + A -~ A with input (v = 0), and the reversible reaction A + A ~ A 
( R = 0 ) .  

4. I R R E V E R S I B L E  C O A G U L A T I O N  A + A - , A  

The simplest case for the process is when there is no input (R = 0), and 
when there are no back reactions (v=O). (15"19'z~ In this case one has the 
irreversible coagulat ion process A + A ~ A alone, as illustrated in Fig. 4. 
This process has a trivial steady state with zero concentrat ion of particles, 
so only the kinetic behavior  will be studied. 

For  R = v = 0, Eq. (2.8) reduces to 

dE(x, t) 02E 
2D - -  (4.1) 

0t 0x 2 

with the boundary  conditions of E(0, t ) =  1 and E ( ~ ,  t ) = 0 .  The time- 
dependent solution to this diffusion equat ion is complicated by the unusual 
boundary  condit ion of E(0, t ) =  1, and it is simpler (15) to consider the 
second derivative of Eq. (4.1) with respect to x, yielding 

~p(x, t) 2D ~2__fp (4.2) 
Ot ~x 2 

Fig. 4. 

T 
m 

T i m e  

Space-time evolution of the process A + A ~ A. The concentration of particles decays 
to zero at long times. 
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where p ( x , t ) = c ( t ) p ( x , t ) ,  from Eq.(2.13b). For p(x , t )  we have the 
boundary conditions p(0, t ) =  p(o% t )=  0. The Green function for Eq. (4.2) 
i s  

1 { e x p [  ~ j - e x p [  8-D~ J J  G(x, x', t) (8zrDt)m (4.3) 

so that 

p(x, t) = dx' G(x, x', t) p(x', O) (4.4) 

Given an initial IPDF p(x, 0), using Eqs. (4.3) and (4.4) and the relation 
c ( t ) = ~  dxp(x ,  t), one obtains a full solution for the time-dependent 
concentration c(t) and the IPDF p(x, t). 

The long-time asymptotic limit (t ~ oo) is easily computed from 

2 x ' 2 x  ( x 2 ) 
G(x, x', t) ~ (Sr~Dt)l/~ ~ t  exp - ~-~ (4.5) 

Substituting in Eq. (4.4) and using the expression C(t) - 1 =  I~ ~ dx xp(x, t), 
we obtain 

1 
c(t) ~ tZL,)'~n--t "1/2 as t--* ~ (4.6) 

and 

x (x2)  
p(x, t) ~ ~ t  exp - as t --, oo (4.7) 

independent of the initial conditions. The dimensionless, or scaling, inter- 
particle distance z = c(t)x approaches the stationary distribution 

p(z, t) --, ~ z exp - as t ~  oo (4.8) 

The transient behavior depends strongly on the initial distribution 
p(x, 0). For example, starting with a completely random distribution, where 
pran(X, O) = C o exp(--COX), the transient behavior is 

( )lj2 
cran(t)~-- 1 -- + O(cZDt) (4.9) 

Co 



with an infinite initial reaction rate: dcran/dtl t=o = oo. This happens because 
the r andom initial configuration places many  particles very close together. 
In contrast,  for an ordered, periodic initial distribution where pper(x, 0)= 
6 ( X - C o l ) ,  the reaction proceeds at a transcendentally small rate until 
t= Or(c~D) ' ] :  

cOOt(t) ~ 1 (8e~Dt)'/= ( 1 )  
Co = - - -  exp 8cYoD i [ l + O ( c ~ D t ) ]  (4.10) 

1.0 

and dcp~r/dt[t= o = O. 
A very interesting initial configuration is the scaling distribution of 

Eq. (4.8), i.e., pS~ O)= (~/2)c2x exp[ - (72 /2)c~x2/2] .  This distribution 
falls between the two extremes of initial order  (the periodic distribution) 
and disorder (the r andom distribution). In this case, the integral in 
Eq. (4.4) is easily evaluated in closed form, yielding 

c~C(t) 1 
Co = (1 + 2~c~Dt)1/2 (4.1 1 ) 

For  this initial condit ion the interparticle distribution remains in its scaling 
form: 

~ [ ~-c(t)Z-x2] (4.12) pSC(x, t)=,,  e(t)2xexp 2 2 l 

I I I 

0.8 

A O . 6  

U~O. 4 

0 . 2  - -  

7 0 6  b e n - A v r a h a m  e t  al. 

o I 
10-3 10-2 i0-1 i0 o I01 10 2 10 3 

2Co2Dt 
Fig. 5. Survival probability [S(t)= C(t)/Co] vs. dimensionless time for the single-species 
coagulation model. The initial conditions for the various curves are (top) periodically spaced 
particles, (middle) invariant scaling distribution, and (bottom) totally random distribution. 
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_-; 0 . 4  - L_. - 

I ~  0 . 2  - -  0 
~r 
D. I 

o I t ' - " - "  
0 1 2 5 

C(t)x 
(c )  I.o 

L ' ' 
) -  

~" 0 . 8  
~o 
Z 
I,LI 

0 .6  

--I 0 . 4  

I~ 0.2 - -  0 
t,- 

o I I 
0 I 2 3 

C(t)x 
Fig. 6. Time-dependent interparticle distributions for particles initially distributed totally at 
random: (a) initial density at t = 0 ,  (b) density at an early time, 2C2oDt=0.066, and (c) 
density at a late time, 2C2oDt = 4.2. The histograms represent data from numerical simulations 
and the smooth curve is the analytic result shown for comparison. 
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It is clear why the concentration falls between the two extremes in this case. 
There is little probability of particles starting off close to each other (the 
density vanishes as x ~ 0), so the reaction rate is less than that in the case 
of totally random initial conditions. On the other hand, there is a 
nonvanishing probability of particles being initially found arbitrarilly close, 
so the rate is greater than for the periodically ordered initial configuration. 

In Fig. 5 we show the time evolution of the concentration for the 
random, periodic, and scaling distributions discussed above. In Fig. 6 we 
plot the evolution of p(z, t) as a function of time, starting from a totally 
random initial configuration and up to the asymptotic long-time stationary 
distribution of Eq. (4.8). For both figures the computation is carried out 
using Eq. (4.4). 

The IPDF of Eq. (4.12) displays an interesting microscopic structure 
for this nonequilibrium state. In thermal equilibrium one expects the 
maximum entropy distribution of particles, characterized by an exponential 
IPDF, p(x) = ce -Cx. (In fact, this is just what we find in Section 6 below for 
the equilibrium stationary state of the reversible reaction A + A ~-~ A.) In 
the coagulation process the scaling form of the IPDF vanishes near x = 0, 
indicating an effective repulsion of the particles. The probability of large 
gaps decays much faster than exponential [proportional to a power of 
exp(-x2)] .  This simple interacting model thus serves as an example of 
dynamic self-ordering in a far-from-equilibrium system. 

5. A + A - - , A  WITH INPUT 

We now turn to the case of coagulation A + A ~ A with input (R > 0), 
but with no back reactions (v = 0), (16'21'22) as shown in Fig. 7. The solution 
is obtained by a straightforward substitution of v = 0 in the results for the 
general case of Section 3. In contrast to the trivial long-time asymptotic 
limit of the pure coagulation process of the previous section, when there is 
a constant input, the system reaches a nontrivial stationary steady state 
with a nonvanishing concentration c~. Note, however, that this is a non- 
equilibrium steady state, as the processes involved are strictly irreversible, 
so there is no detailed balance. 

Substituting v = 0 in Eq. (3.6), we find the steady-state concentration 

c s ( R , D ) -  Ai(0) \2-OJ =(0.72901...) ~-~ (5.1) 

[where Ai(0)=0.35502... and Ai '(0)=-0.25881.. .] .  The fact that c s is 
proportional to (R/D) 1/3 can be deduced from a scaling argument (really 
just dimensional analysis): Assume that the initial concentration plays no 
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c~ 
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o.1 

Fig. 

T i m e  

7. Space-time diagram for the evolution of A + A ~ A with input. 

role in the steady state. Then the only physical parameters influencing the 
process are the diffusion constant D, with dimensions of (length)2/(time), 
and the input rate R, with dimensions of (length x time) 1. To obtain the 
correct dimension of cs, (length) 1, one must combine them as (RID) a/3. In 
contrast, notice that for the reaction-limited process, a classical rate 
equation would predict cs~ R 1/2. We will discuss classical rate equations 
and their applicability to diffusion-limited processes in Section 7. 

The stationary IPDF as computed from Eq. (3.5) with v = 0 is 

1 02Eo(x) { R ~t/3 ai,,((R/2D)l/3x) (5.2) 
Ps(X)- c,(R, O~) ~ = \ ~ J  iAi'(0)l 

This stationary distribution is plotted in Fig. 8. It is interesting to notice 
that the probability for large gaps between particles falls off as exp(-x3/2),  
which is slower than e x p ( - x  2) of the IPDF  for the pure coagulation 
process. This can be understood in view of the random input of A particles, 
which is an effective disordering agent. Notice, however, that the random 
input does not manage to induce complete disorder, and the stationary 
IPDF  displays a greater ordering than a totally random distribution of 
particles (a purely exponential IPDF).  Moreover, the vanishing of the 
steady state IP DF  at x = 0 indicates an effective repulsion of particles in 
this nonequilibrium situation. The steady state of the coagulation process 
with input thus serves as an example of static self-ordering in a far-from- 
equilibrium system. 
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Fig. 8. Monte Carlo (points) and theoretical (solid line) steady-state IPDF for the coagula- 
tion model with input. The broken line is the dynamic scaling IPDF for R = 0  (Section 4), 
while the dash-dotted line is the exponential IPDF for equilibrium. Results are scaled by the 
average distance between particles. 

The transient behavior of the system is represented by the eigenfunc- 
tions of Eq. (3.2) corresponding to eigenvalues 2 > 0. From Eq. (3.7), we 
see that for v = 0  the eigenvalues still form a discrete spectrum, 2,,--- 
(2DR2) t/3 [an]. Hence, at long times the transient behavior is dominated by 
the eigenfunction El,  and there is an exponential approach to steady state 
with decay rate 21 = (2DR2) 1/3 Ja~J = (2.3381...)(2DR2) 1/3. 

6. REVERSIBLE REACTION A+A*-,A 

We now consider the reversible coagulation process, A+A*--~A/17) 
That is, the birth process is included (v > 0), but we do not allow for input 
of particles (R = 0). In this case there is again a nontrivial steady state, but 
this is an equilibrium steady state, as the process is fully reversible, so that 
detailed balance holds in the steady state. This process is shown in Fig. 9. 
Notice that the process does not conserve mass and therefore, strictly 
speaking, should not be termed "reversible." We use this terminology to 
avoid the more cumbersome alternative "forward and back-reaction...." 

To obtain the solution for this model, one could formally take the 
limit R --* 0 in the results for the general process of Section 3. However, this 
turns out to be a very singular limit of the dynamic equation: note that the 
spectrum in Eq. (3.7) becomes continuous when R--* 0. 
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Time 

Fig. 9. Space-time diagram for coagulation A + A ~ A, with the back reaction A ~ A + A. 
Notice the ambiguity in the direction of time in the stationary state, a hallmark of equilibrium 
with detailed balance. 

The easiest approach is to start from the eigenvalue equation (3.3) and p [v.]o--vx/4D set R = 0. We have, recalling E ~ ( x ) = ,  ~ . ~  

~2F~t (x ) ( t )2 )  
0 = 2 D  ~?x~ ~--~-2 F;.(x) (6.1) 

The stationary solution is obtained by setting 2 = 0. The boundary condi- 
tion at x = 0 implies Eo(0)= Fo(0)= 1, and we find 

Eo(  x ) = e . . . .  /2D (6.2) 

Using Eqs. (2.9) and (2.13b), we derive 

/) 

cs = 2---D (6.3) 

and 

p s ( x )  = ~ D  e - - v x / 2 D  = Cs e . . . .  (6.4) 

Thus, the stationary IPDF is exponential, corresponding to maximum 
entropy as in the case of thermal equilibrium. This result is expected 
because of the reversible nature of the process--the steady state has the 
property of detailed balance. The statistical time-reversible invariance of 
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this equilibrium steady state can be seen in Fig. 9, where the direction of 
time is ambiguous (compare with Figs. 4 and Fig. 7). In fact, the stationary 
state of this process is exactly a totally random (Poisson) distribution of 
particles on the line, obviously the maximum entropy state. This result can 
be derived from the N-body level of description/23) 

For  the transient behavior we want to solve for the eigenvalues 2 > 0. 
If one were to take a naive R ~ 0 limit of the spectrum in Eq. (3.7), one 
would have guessed that we would still have a gap between the stationary 
eigenvalue 2 = 0 and the first decaying solution 2--v2/8D. It  so happens 
that this is not the case, and there is spectrum in the interval (0, v2/8D). 

For  2 > 0 ,  F~(x) need not necessarily vanish as x ~  ~ ,  because 
E~ =e vx/4DF~., and the boundary conditions require only that E;.---,0 as 
x ~  oo. Suppose first that 2>v2/SD. Then F x ( 0 ) = 0  [see discussion 
preceding Eq. (3.7)], and the solution of (6.1) is 

Fz(x) = sin 1-6-D2 ) x j ,  2 > ~--~ (6.5a) 

For 2 = v2/SD, we have 

1) 2 
F~(x) = x, )~ -= - -  (6.5b) 

8D 

while for A < v2/8D (but still 2 > 0), 

F)~(x) = sinh 16--D2 f-D,] x , 2 < 8D (6.5c) 

Notice that F~ in this last case diverges slower than e vx/4D, S O  that Ex 
vanishes as x ~ 0% as required. The eigenfunctions for 2 > 0 are thus 

E).(x) = e-VX/4D sin 16-D2 ) x j ,  2 > (6.6a) 

/)2 
E;~(x) = xe ~x/4D, A = - -  (6.6b) 

8D 

I( ] E~(x) = e vx/4D sinh ~ ,  x , 0 < 2 < (6.6c) 

From the above one can infer the approach to equilibrium for various 
initial conditions. If the initial I P D F  falls off as exp(--CoX) as x ~ 0% with 
Co> v/4D= c j2,  then the time-dependent solution cannot contain any 
modes with 2 < vZ/8D, as in (6.6c), because these modes decay slower than 
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exp( -c~x/2) ,  In this case the slowest decaying component  corresponds to 
)~=v2/8D=Dc2/2 and c ( t ) - c s~exp ( -Dtc~ /2 )  as t ~ o o .  If the initial 
I P D F  falls off as exp ( -CoX ) as x ~ oo, with co < v/4D = c J2, then it must 
contain a mode of the form of (6.6c), with 2=CoV-2C2D=2Dco(Cs-Co). 
This would be the slowest decaying mode, so that c ( t ) - c s ~  
exp[-2Dtco(c~-Co) ] as t ~  oo. Thus, there is a sharp transition in the 
dynamics of the approach to equilibrium, i.e., in the exponential relaxation 
time 

= - l i m  t ~ I n  Ic( t ) -  csl ( 6 . 7 )  
t ~ o o  

governed by the spatial decay of the initial IPDF.  This transition is 
depicted graphically in Fig. 10. 

In fact, given a specific initial IPDE,  one can obtain an explicit solu- 
tion for the transient dynamics. In ref. 17 we carried out such a calculation 
for the particular case when the initial distribution is exponential, p(x, O) = 
Co e x p ( -  COX), corresponding to an equilibrium state with concentration Co. 
These initial states are natural in the sense that they correspond to the 
system's equilibrium steady state at some fixed value of the parameters D 
and v. The long-time behavior, computed from the exact expression valid 
for all times, is 

Fig. 10. 

~  . . . .  015 . . . . . .  
C0 

The exponential relaxation time z as a function of the initial concentration c o. The 
units are �89 2 and %, respectively. 
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c( t ) ~ c~ - ( c~ - 2Co) expi - -2Dtco(  G - Co)], 
C S 

C o < ~  

v( t )  ~ cs (27tDt)V 2 exp c0 = -~  

c( t )  ~ c s + - - ~  [c~ -2 - (G - 2Co)-2] ~ exp 

(6.8a) 

(6.8b) 

C s 
CO > -~ 

(6.8c) 

in agreement with our foregoing discussion for general initial conditions. In 
Fig. 11 we show the excellent agreement obtained between the exact 
solution and computer simulations of the process with an initial exponen- 
tial IPDF.  

Moreover, the approach to equilibrium for the coagulation process 
with back reactions can be made as slow as desired. Under appropriate 
initial conditions the approach to equilibrium may even be algebraic 
in time. Indeed, an exact analysis of Eq. (6.1) shows that if the initial 
condition decays as E ( x , O ) , , ~ x  -~ as x - ~ o o ,  f o r  any  e > 0 ,  then 
c ( t ) ~  Cs+ O ( t - ~ ) .  Such a decay in E(x ,  0) corresponds to a well-defined 
f r a c t a l  distribution of particles on the line. 

�9 

o 

�9 
r j  

. _ _ r ~  ~ 

O i i i i L 

0 1 2 3 4 5 t 
Fig.  11. T h e  a p p r o a c h  o f  t he  c o n c e n t r a t i o n  c(t) to  its e q u i l i b r i u m  v a l u e  Ceq for  v a r i o u s  ini t ia l  

concentrations: co/Con =0.1, 0.2, 0.5, 0.6, and 2.0. The Monte Carlo results (dots) are plotted 
together with the exact results. The units are Ceq and ~ ,1D-~c~-~2, respectively. 
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Spatial correlations in the microscopic distribution of particles provide 
the physical mechanism for the slow relaxation "phase." When there are 
large gaps between neighboring particles, as occurs in a low-concentration 
Poisson distribution of particles, then the relaxation is dominated by the 
time taken to fill these gaps. These large empty regions can only be filled 
in from the sides, and a simple argument provides the correct decay time: 
concentration fronts drift into empty regions at speed v, and a typical 
initial interparticle distance is Col; thus, the time taken for the typical gap 
to be filled is ~ = (Coy)-1 = (2Dc~co)-I the correct value [-Eq. (6.8a)] of tile 
exponential relaxation time as Co ~ 0. This argument is clearly invalid for 
concentration perturbations above the equilibrium concentration, and a 
relaxation time uniform in initial conditions is not surprising. What is 
(perhaps) surprising is that the mechanism described above exerts its 
influence at a specific critical initial concentration, Co = c,/2, well below c,. 

7. RATE E Q U A T I O N S  A N D  IPDFs 

We now investigate the existence and the usefulness of rate equations 
in describing diffusion-limited nonequilibrium processes. (15-17) On the 
hydrodynamic level our system is usually described by a diffusion-reaction 
equation of the form 

~c(x, t) 02c(x, t) 
- -  - O  - -  

Ot Ox 2 
klc(x,  0 2 + kzc(x, t) + R (7.1) 

where c(x, t) is the local concentration of particles, and kl and k2 denote, 
respectively, the forward- and back-reaction rate constants. This level of 
description results, for example, from a cluster expansion, i.e., an expansion 
in increasing orders of the strength of the interaction/24~ Such an expansion 
takes the form of a hierarchy of kinetic equations for the multiple-point 
correlation functions which may be truncated if the correlations between 
particle positions is small. This is the case for an equilibrium system with 
no interparticle forces and reversible reactions (where the equilibrium state 
is a state of maximum entropy), and for a nonequilibrium system if the 
reaction probability for colliding particles is small. The correlations are 
also small for some systems during the transient regime following a special 
initial condition with small or no correlations. (24) 

The general conditions under which such a truncation is justified are 
not known quantitatively, but it is clear from the preceding sections t h a t  
there are generally strong particle-particle correlations away from 
equilibrium in diffusion-limited systems. Hence, it is not surprising that the 
usual diffusion-reaction equation--or its spatially homogeneous "mean- 

822/60/5-6-!3 
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field" rate equation--breaks down. What is not clear a priori is whether 
such a mean-field description is valid close to the equilibrium state of the 
purely reversible reaction A + A ~ A, where correlations are small, but 
interactions are strong, or whether some other "effective" rate equation 
holds far from equilibrium. 

Let us analyze the predictions of the usual hydrodynamic description, 
Eq. (7.1). Consider first the simplest case of the irreversible coagulation 

process (k2=0)  with no input ( R = 0 )  as in Section4. Then Eq. (7.1) 
reduces to 

~c(x, t) 02c(x, t) 
= D  - -  klcZ(x, t) (7.2) 

~t 0x 2 

For a spatially homogeneous system on the macroscopic scale, 
c(x, t )= c(t), so Eq. (7.2) becomes an ordinary differential equation. The 
predicted decay of concentration is then c( t )~ 1/kl t, in contradiction to 
the true (t 1/2) decay, as shown in Section 4. Neglect of the microscopic 
spatial variations in this case leads to a breakdown of the usual 
hydrodynamic equation. One possibility is that by taking some spatial 
inhomogeneities into account, as is done by allowing a variation of the 
density c with space, the anomalous kinetics of the diffusion-limited process 
could be predicted. This kind of calculation does give the correct behavior 
of the diffusion-limited two-species annihilation process A +  B - ,  inert. 
Macroscopic segregation occurs for the two-species annihilation process, 
and the hydrodynamic equation is apparently able to account for the effect 
of long-range spatial inhomogeneities on the reaction rate. This is not the 
case for the single-species reaction, where the nonequilibrium spatial 
structure remains on a microscopic level. To see the failure of Eq. (7.2), 
suppose the system is enclosed within a volume L. Define a spatial-average 
global concentration by 

L 

c(t) = L -1 Io dx c(x, t) (7.3) 

Performing this spatial average on Eq. (7.2), we obtain 

(;o dc(t) L -1 f/. L d t ' = - k l  dxc2 (x , t )<~ -k  I L-1 dxc(x , t )  = - k l c 2 ( t )  

(7.4) 

where the diffusion term vanishes assuming zero flux at the boundaries, 
and we have used the Cauchy-Schwartz inequality. It follows that the 
mean-field decay, c( t )~  1/k I t, is an upper bound on the decay of the 
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spatially averaged concentration as given by the nonlinear partial differen- 
tial equation (7.2). This is, however, in clear contradiction with the exact 
solution, which is slower than lit. The attempt to separate the effect of 
diffusion from that of reaction, as in done in diffusion-reaction rate 
equations, leads to wrong results. 

Some researchers have proposed effective reaction terms in classical- 
like rate equations to describe diffusion-limited reactions. The effective 
reaction term is supposed to account for the effects of the diffusion 
mechanism, the spatial inhomogeneities and correlations, and the reaction 
combined. For example, it has been suggested that for the irreversible diffu- 
sion-limited coagulation process in one dimension, the reaction term is 
proportional to the cube of the concentration. (lz22) This is in agreement 
with the exact results in Section 4. Indeed, the long-time behavior, c(t)---, 
(2~zDt) 1/2, is consistent with the rate equation 

dc( t )= _z~Dc(t) 3 as t ~ ~ (7.5) 
dt 

Moreover, if the gaps between nearest particles are initially distributed 
according to the scaling distribution pSC(x, O) = (r~/2)c2x 
exp[ - ( l r /2 )c2x2 /2] ,  Eq. (7.5) is exact for all times, since it yields c(t)= 
Co/(1 +rcc~Dt) 1/2, i.e., the exact result for this IPDF in Eq. (4.11). If the 
initial IPDF is other then pSO, Eq. (7.5) is valid only in the long-time 
asymptotic limit. Thus, there can be an autonomous polynomial rate equa- 
tion for the irreversible coagulation process in one dimension, valid for all 
times, but its existence depends on the microscopic initial conditions. 

Consider now the irreversible coagulation process with input (Sec- 
tion 5). As discussed above, in the absence of input (R =0)  the concentra- 
tion (eventually) obeys dc/dt = -zrDc 3. On the other hand, if the diffusion 
is turned off (D = 0), the concentration obeys dc/dt = R. It is sensible to 
hypothesize an effective autonomous polynomial rate equation for the 
combined process, as the combination of the reaction and diffusion 
separately, of the form dc/dt = -rrDc3+ R. However, this is incompatible 
with the correct stationary concentration given in Eq.(5.1). (Notice, 
though, that it predicts the correct--and nonclassical--scaling of cs with D 
and R.) 

Near the nonempty stationary states an approximate rate equation 
can be derived on the basis of the exact concentration and the relaxation 
spectrum (see the end of Section 5). The asymptotic approach to a 
nonempty stationary state is given by c ( t ) = c ~ + 6 c e  ~.1,, with cs= 
[]Ai'(O)I/Ai(O)](R/2D) 1/3, and 21=Ia1[(2DR2) 1/3. Hence, the simplest 
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autonomous, first-order equation which correctly captures both the non- 
trivial concentration and its relaxation is 

do(t) 
dt = -~ +/3R (7.6a) 

where 

2 last Ai(0)  2 [all" iAi'(0)l 
3 Ai'(0) z ' /3-  3 Ai(0) (7.6b) 

The difference in the reaction kinetics in the presence of both diffusion- 
reaction and input can be traced to the spatial structure of the non- 
equilibrium states. The IPDFs, different for the reaction with or without 
input, determine the rate at with particles interact; hence, it is not surpris- 
ing that the reactions proceed at different rates with different microscopic 
configurations even if the macroscopic concentrations coincide. 

We may combine our knowledge of the system's behavior in the limits 
D/R ~ 0 and 0% as well as the stationary case, to construct the necessary 
form of a rate equation for this process reproducing all the correct 
dynamics. Any such first-order equation must be of the form 

dc( t )/dt = ( - ~ D c  3 + fiR) F( c/c~) (7.7a) 

where c~=c,(R, D), the exact stationary concentration given in Eq. (5.1), 
and the "scaling" function F(z) satisfies 

= - (7.7b) F(0) = ~, F(1) 1, F(oo) = 

The claim is that this nonpolynomial rate equation [no polynomial satisfies 
Eq.(7.7b)] describes the time-dependent concentration after initial 
transients have died away. Perhaps such a rate equation is valid even for 
some restricted class of time-dependent problems; for example, if R was 
modulated periodically. (We will return to this question in the discussion 
in Section 9.) 

Most importantly, our exact results also show that no autonomous 
first-order rate equation can possibly describe the dynamics for arbitrarily 
fast input rate changes in the one-dimensional single-species coagulation 
process. Here is a counterexample: Consider an experiment in which R = 0 
from some large, negative time until t = 0, so that the interparticle distances 
are distributed according to Eq. (4.12) with Co = c(0)# 0. At time t = 0 ,  R 
is suddenly switched to the value R* so that the stationary concentration 
for input rate R* is exactly e(0), i.e., cs(R*, D) = c(0). If the concentration 
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obeyed a first-order equation, then c(t)= c(0) for all t ~> 0. However, dc/dt 
at t = 0  + is easily evaluated from Eqs. (3.1) and (2.9) (with v=0) ,  and 
it is nonvanishing. In fact, the concentration increases past t = 0 before 
relaxing back to c(0) as t--* oe. Thus, in general, at least a second-order 
macroscopic rate equation is required, depending also on dR/dt. 

For the completely reversible process A + A ~ A  (i.e., R = 0 )  we 
cannot construct a rate equation of any finite order. The typical decay to 
equilibrium, as given in Eq. (6.8c), is not purely exponential or purely 
algebraic as would be predicted by any finite-dimensional dynamical 
system description of the process, even arbitrarily close to equilibrium. 
Moreover, the purely exponential approach to equilibrium in Eq. (6.8a) 
depends on the initial condition. This behavior can obviously never be 
accounted for by a finite system of ordinary equations with coefficients 
independent of the initial conditions. Below the transition point, Co < Cs/2, 
where the initial state is far enough from equilibrium, spatial correlations 
among the particle positions persist forever. 

8. O T H E R  R E A C T I O N S  

In this section we discuss some reactions which are closely related to 
the single-species coagulation process. The single-species annihilation 
process 

A + A ~ inert (8.1) 

is similar to the coagulation process except that when particles react they 
annihilate (or combine to yield an inert species irrelevant to the kinetics of 
the process, as in the irreversible reaction A + A-~ B). Another related 
reaction is the aggregation process, 

a i +  Aj--, Ai+ j (i, j =  1, 2, 3,...) (8.2) 

in which a cluster of i particles aggregates to a cluster of j particles, 
resulting in a larger cluster of i + j particles. It is assumed that all clusters 
diffuse with the same diffusion coefficient D, and clusters are treated as 
point particles, independent of the cluster size. While there exist exact 
results for the macroscopic concentration of particles for both 
models, (15,t9,~~ there are only partial, nonrigorous results concerning 
the microscopic ordering of particles. We discuss these models for the sake 
of completeness. We first consider the totallY irreversible versions of these 
reactions, without any input of any kind, 

The aggregation process is an abstract generalization of coagulation 
and annihilation, containing both processes, as noted by Spouge. (2~ 
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Indeed, if one focuses on the reaction between clusters, disregarding their 
size, the process degenerates to the one-species coagulation process. For 
example, the concentration of A particles in the coagulation process is 
given by 

c~~ ~ ci(t) (8.3) 
i=1 

where c~(t) is the concentration of/-clusters in the aggregation process. If, 
on the other hand, one focuses only on clusters with an odd number of 
particles, disregarding the even clusters, the result is a one-species annihila- 
tion process, because the aggregation of odd clusters to each other converts 
them into even clusters, while aggregation of even clusters to any other 
clusters leaves the number of odd clusters unchanged: 

Aodd -[- Aodd "* Aeven ; Aod d + A . . . .  --} Aod d ; A . . . .  q- Aeven ---> A . . . .  

(8.4) 

The concentration of A particles in the annihilation process is the sum of 
the concentrations of odd clusters alone: 

cann(t)  = ~,  C2j+I(t ) (8.5) 
j=O 

The IPDF for the annihilation process is given by the distribution of gaps 
between adjacent odd clusters (ignoring all even clusters that may occur in 
between). 

The analogy between the aggregation, coagulation, and annihilation 
processes can be exploited to draw conclusions from one process and apply 
them to another. Consider, for example, the distribution of/-clusters as a 
function of i in the aggregation model. This can be linked to the IPDF of 
the coagulation model as follows. Suppose that at time t = 0 we start the 
aggregation process, with initially only one-particle"clusters" (monomers). 
Denote the initial locations of these monomers by x~(0), i.e., particle num- 
ber k is initially at xk(0) (see Fig. 12a). After the system has evolved for 
some long time t, we find an /j-cluster at xi1(t), followed by an i2 cluster 
at xn(t), etc... (Fig. 12b). This situation means that particles 2 ..... il have all 
aggregated to particle 1 by time t, and in the meanwhile particle 1, now an 
il-cluster, has changed its location from x1(0) to xi~(t). Likewise, particles 
il + 2, il + 3 ..... i~ + i2 have all aggregated to particle il + 1 and the resulting 
i2-cluster is now at xi2(t), etc. But, on the average, x~(t)= xo.(O), because 
the iflh particle has merely performed a symmetric random walk during 
this time. Let the average distance between particles, when the process 
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Fig. 12. Relation between interparticle distances and the distribution of k-clusters in the 
coagulation model. (a) The system at some initial state. (b) The clustering of particles at some 
later time. The distance between the clusters is roughly proportional to their masses. 

started, be 1/c o. It follows that, at time t, the distance between a k-cluster 
and its nearest neighbor cluster is x = k/co, on the average. Thus, p(x) dx, 
the distribution of gaps x between nearest particles (the I P D F )  in the 
coagulation process, is related to q(k) dk, the distribution of clusters of size 
k in the aggregation process. In fact, 

q(k) Co p 4Dc2 texp as t ~  oe (8.6) 

where we have made use of Eq. (4.7). We may also use Eq. (4.8) to obtain 
a dynamic scaling distribution for the cluster sizes, 

q ~-g = ~ - ~ e x p ,  ~ as t--, oe (8.7) 

where k * ~  Co(2~Dt) ~/2 is the long-time asymptotic average cluster size. 
Another interesting conclusion is that for the annihilation process the 

asymptotic long-time concentration of particles is exactly half that of the 
coagulation process: c a n n ( t )  = (1/2)cC~ as t --* oo. This follows from Eqs. 
(8.3) and (8.5) and the fact that the distribution of cluster sizes is smooth 
and vanishes fast enough (faster than algebraically) as k --, 0% Eq. (8.6). In 
fact, the concentration of particles for the annihilation model can be 
exactly solved (m'2~2s) and the above observation is confirmed by the exact 
solution. 

A slight modification of the aggregation model allows us to discuss 
both coagulation and annihilation with input. Consider the aggregation 
model with a random input of monomers  at a rate R (concentration per 
unit time). Again, focusing on either all clusters, or just the odd-sized ones, 
we can select between the two cases of annihilation and coagulation. On 
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the other hand, the back-reaction process A ~ A + A  has no obvious 
analog in the annihilation model and we shall not discuss it here. The 
stationary concentration for annihilation with input has been obtained 
exactly. (28) One would be tempted to guess that, similar to the processes 
without input, e~nn= (1/2)Cs ~~ This is not the case. The exact result is 
Cs ann= 2-2/3C c~ This can be traced to the fact that for annihilation with 
input, q(k) falls off only algebraically (with a cutoff) as k -4/3 for large k. (21) 

No exact results exist for the stationary IP D F  of the annihilation pro- 
cess. The asymptotic x -~ oe limit has been studied. It is has been proved 
that p(x),,~e -x [rather than as exp(-x3/2)]  as in the coagulation 
process). (19) This can be understood by the following heuristic argument. 6 
The IPDF of the annihilation process is given by the distribution of gaps 
between nearest odd clusters in the aggregation process. Between two 
nearest odd clusters any number of even clusters can occur. Assuming that 
there is little (i.e., short-range) correlation between the parity of subsequent 
clusters, the probability of having n even clusters in between two nearest 
odd clusters is a power of e-" .  Assigning a typical length to the distance 
between clusters, one arrives at the conclusion p ( x ) ~  e -~. 

A final point of interest Concerning the annihilation process with input 
is the existence of rate equations for the macroscopic concentration in the 
Vein of the discussion in Section 7. Recall that the stationary concentration 
of the annihilation process with input is related to that of the coagulation 
process with input by C~nn= 2-2/3es c~ Similarly, the exact solution shows 
that the approach to stationarity is exponential with rate 

j~,n = 22/3 [all (2DR2) 1/3 = ~92/3~c~ 

Thus, by the same arguments as in Section 7, a first-order rate equation 
must be of the form 

dc ann /22/3eann\ 
-~ [ --o~D(22/3cann) 3 q- t~R] G ~ )  (8.8) 

dt 

where the dimensionless constants c~ and fl are the same as in Section 7, 
and the scaling function G(z) satisfies the same constraints as F(z) of 
Section 7, i.e., G(z)=F(z)  for z = 0 ,  1, and m. This result suggests the 
interesting possibility that if they exist in some sense, then G(z)=F(z)  
for a//z.  

We have studied the annihilation process with and without input, 
numerically. Our data are in agreement with the results of this section. Of 

6 We thank F. Leyvraz for pointing this out to us. 
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Fig. 13. The logarithm of the IPDF for the annihilation model with input is plotted against 
the reduced distance x/(x).  The exponential decay of the tail of the IPDF is evident from this 
plot. This is contrasted with the exp(-x 3/2) decay of the tail for the coagulation model with 
input. 

most interest are the IPDFs for which complete exact results do not exist, 
Our Monte Carlo data for the annihilation process with input are com- 
pared to the analytic I P D F  of the coagulation process in Fig. 13. The data 
for the annihilation process with input show the asymptotic exponential 
tail discussed above. 

9. S U M M A R Y  A N D  D I S C U S S I O N  

To summarize, the diffusion-reaction system studied in this paper 
provides an exactly soluble example of a nontrivial interacting-particle 
model. The model yields the macroscopic particle density and its kinetics 
in a variety of nonequilibrium situations with a remarkably simple and 
straightforward analysis. The failure of naive mean-field theory, i.e., the taw 
of mass action, is clearly displayed in these diffusion-limited reactions. The 
role of microscopic correlations in the reactant positions in determining the 
system kinetics--an example of nonequilibrium self-ordering--is explicitly 
illustrated. 

Apart from quantitative disagreement with the law of mass action, the 
reversible coagulation process A + A ~ A exhibits a sharp, second-order- 
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like "phase" transition in its relaxation dynamics. To the best of our 
knowledge, this is the first discovery of such a transition in the dynamics 
of an interacting-particle system. The transition depends explicitly on long- 
lived microscopic fluctuations, or spatial correlations, and is a striking 
example of the failure of any kind of macroscopic rate equation description 
of the dynamics. 

Several natural questions come to mind concerning the results of these 
investigations. First of all, our restriction to one spatial dimension certainly 
limits the applicability of the model, and it is approporiate to ask wether 
our analysis, or any of our results, can be extended to higher dimensions. 
The simplicity of our solution of this model stems from its formulation in 
terms of the probability E(x, t) of finding an interval of length x void of 
particles. This is in distinction to the usual formulation of diffusion-reac- 
tion systems on a microscopic level in terms of a hierarchy of evolution 
equations for, say, the joint probability distributions of the particle posi- 
tions. Although straightforward generalizations of E(x, t) can be for- 
mulated in higher spatial dimensions, e.g., the probability of finding a 
d-dimensional box or sphere empty, we cannot construct a closed equation 
for its evolution. The problem is that particles outside an empty region can 
have correlations in their positions along the boundary in higher dimen- 
sions. As has been discovered throughout the history of statistical 
mechanics, the simple topology of one spatial dimension allows for great 
simplifications in the solution of certain problems. 

Any attempt to formulate other reaction process in terms of E(x, t), 
even in one dimension, faces similar closure problems. The single-species 
annihilation process A + A ~ inert and the two-species annihilation process 
A + B ~ inert fall into this category. In both cases E(x, t) does not satisfy 
a closed kinetic equation. This can be seen by simply noting that with 
annihilation processes occurring, occupied intervals can become empty due 
to reactions taking place inside the interval, and not just due to processes 
occurring at its endpoints. Even the natural extension of the coagulation 
process allowing for the spontaneous disappearance of particles (equivalent 
to the back reaction of the input process) suffers from this closure problem. 
Nonetheless, our solution of the coagulation process--including informa- 
tion on the spatial correlations away from equilibrium--is of interest in its 
own right, and will prove useful in investigations of other more general 
problems. 

Consider, for example, Monte Carlo simulations for diffusion-limited 
reactions. Computer simulations are an important tool in the study of dif- 
fusion-reaction systems, and it is of unquestionably great value to have a 
simple, yet nontrivial benchmark to check the quality of such numerical 
experiments. In more analytical investigations, chemical reaction processes 
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are often studied via truncation of a hierarchy of multiple-point distribu- 
tion functions. Such truncations can take the form of an expansion in some 
small parameter, or they can be accomplished by some more intuitive 
closure schemes. The advantage of a systematic expansion is that, at least 
qualitatively, the region of validity of the approximation can be 
determined. On the other hand, unsystematic mean-field-like truncations 
can prove themselves remarkably good a posteriori. One valuable use of an 
exact solution, like the one provided in this study, is to serve as a check 
on the quality of such approximations. We refer the reader to a recent 
application of our solution to just this question. (29) In another direction, 
the exact solution in the diffusion-limited case contrasts nicely with the 
solution of the reaction-limited case, where the law of mass action, and low- 
order corrections to this limit, is recovered. (3~ Having control of the 
process in two opposing limits with very different static and dynamic 
behavior in the two extremes calls for an investigation of the nature of the 
crossover regime. 

An open problem that remains for the reversible coagulation process 
is the question of the existence of the transition in its relaxation dynamics 
in higher spatial dimensions, or if the strict diffusion-controlled limit is 
relaxed. As noted above, our exact solution does not have anything to say 
about this question. It seems reasonable, however, to guess that the 
mechanism for the transition is valid in higher-dimensional spaces and for 
low concentrations slightly away from the diffusion-limited extreme; the 
reversible coagulation process should still be sensitive to the existence of 
large, empty regions, as there is no other agency for the equilibration of 
these voids other than diffusion in from the edges. The questions are these: 
What is the upper critical dimension dc for the kinetic transition? If dc < ~ ,  
how do the critical exponents vary with dimension? Does the usual law of 
mass action take over in high enough dimension, even for initial conditions 
very far from equilibrium? How far away from the diffusion-limited regime 
does the transition survive? 

An interesting point about the model studied in this paper, which we 
have not previously mentioned, is that the problem can be solved just as 
easily in a finite volume as in infinite volume. All we need to do is retain 
translation invariance by imposing periodic boundary conditions. Then the 
kinetic equation for E(x, t) in Eq. (2.8) [or  Eq. (2.7) on a lattice] remains 
valid, as does as the boundary condition E(0, t ) =  1. The only change is 
that, for the system on a line of length L, the other boundary condition 
becomes E(L, t ) =  0 as long as at least one particle is present. The study of 
finite-system-size effects are most interesting in relation to the transition in 
the purely reversible process. Not  unexpectedly, restriction to finite volume 
destroys the transition in a strict sense because the relaxation spectrum 
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develops a gap which depends on the volume. The gap in the spectrum 
does not, however, vanish continuously as L--, oo. Rather, the gap is 
always bounded from below by ve/SD for any L < o% similar to the situa- 
tion noted in Section 6 in our discussion of the spectrum perturbed by a 
constant input of particles. The system in infinite volume is a surprisingly 
singular limit of the finite-volume problem. In distinction to the conven- 
tional wisdom concerning 1D finite-volume effects from transfer matrix 
studies, we find the emergence of an unbounded characteristic finite-size 
time scale near the location of the infinite-volume transition. We refer the 
interested reader to a recent paper discussing this phenomenon in detail. (31) 

Several other aspects of the reaction with input deserve some more 
comment. In Section 7 we mentioned the possibility, albeit heuristically, of 
a finite-dimensional dynamical system description of the macroscopic 
behavior of the process subject to a time-dependent input rate R. Chemical 
reactions play an important role as realizations of concepts in nonlinear 
dynamical systems theory, and it would be interesting to see if this single- 
species reaction process can be rigorously formulated as a finite set of 
ordinary differential equations (ODEs). Clearly it is in realilty an infinite- 
dimensional dynamical system described by the partial differential equation 
(PDE) in Eq. (2.8), even in the spatially homogeneous case. However, 
driven by a periodic input rate R(t), say, one would expect a low- 
dimensional attractor to emerge in the system's phase space. Recent 
research (32) in dissipative PDEs has investigated this idea, mostly for the 
time-asymptotic behavior of autonomous systems, and perhaps these 
techniques can be extended to this model. Such an analysis would provide 
a nice example of the reduction of a nonequilibrium model from 
microscopic stochastic dynamics, to a PDE, to ODEs. In particular, we 
raise the following question: given an arbitrary input function R(t) for 
t >~ 0, is there a finite set of ODEs for the concentration and some auxiliary 
dynamical variables? 

Finally, the simplicity of solution of our model suggests that it may 
also be useful for the investigation of the effect of external noise on a 
diffusion-reaction system. (33) The linearity of Eq. (2.8) holds promise that 
the system might even be solved for a stochastic macroscopic input, where 
R(t) is a random process. The question of the influence of external noise in 
spatially distributed nonlinear systems is a topic of current interest (see, 
e.g., ref. 34), and this model may serve to illuminate some phenomena that 
are lost with the neglect of spatial degrees of freedom. 



Diffusion-Limited Reaction 727 

ACKNOWLEDGMENTS 

Many people contributed to this research through their comments 
and suggestions. In particular, we are grateful to M. Bramson, 
D. Considine, P. Constantin, D. Griffeath, J.C. Lin, K. Lindenberg, 
V. Privman, S. Redner, L.S. Schulman, J.J. Spouge, and B.J. West. The 
Math Works, Inc. provided the software package MATLAB with which 
many of the computations were performed and many of the figures were 
prepared. D.b-A. thanks the Donors of the Petroleum Research Fund for 
partial support of this work. C.R.D. was supported in part by NSF grants 
PHY-8958506 and PHY-8907755. 

REFERENCES 

1. K. J. Laidler, Chemical Kinetics (McGraw-Hill, New York, 1965). 
2. S. W. Benson, The Foundations of  Chemical Kinetics (McGraw-Hill, New York, 1960). 
3. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 

Amsterdam, 1981). 
4. H. Haken, Synergetics (Springer-Verlag, Berlin, 1978). 
5. G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New 

York, 1980). 
6. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985). 
7. K. Kang and S. Redner, Phys. Rev. A 32:435 (1985); V. Kuzovkov and E. Kotomin, Rep. 

Prog. Phys. 51:1479 (1988). 
8. D. Toussaint and F. Wilczek, J. Chem. Phys. 78:2642 (1983). 
9. G. Zumofen, A. Blumen, and J. Klafter, J. Chem. Phys. 82:3198 (1985). 

10. M. Bramson and J. L. Lebowitz, Phys. Rev. Lett. 61:2397 (1988). 
11. D. ben-Avraham, J. Stat. Phys. 48:315 (1987); Phil Mag. B 56:1015 (1987). 
12~ R. Kopelman, J. Stat. Phys. 42:185 (1986); Science 241:1620 (1988). 
13. H. Berryman and D. Franceschetti, Phys. Lett. A 136:348 (1989). 
14. D. Dab, A. Lawniczak, J.-P. Boon, and R. Kapral, Phys. Rev. Lett. 64:2462 (1990). 
15. C. R. Doering and D. ben-Avraham, Phys. Rev. A 38:3035 (1988). 
16. C. R. Doering and D. ben-Avraham, Phys. Rev. Lett. 62:2563 (1989). 
17. M. A. Burschka, C. R. Doering, and D. ben-Avraham, Phys. Rev. Lett. 63:700 (I989). 
18. M. Abramowitz and I. A. Stegun, Handbook of  Mathematical Functions (Dover, New 

York, 1965). 
19. M. Bramson and D. Griffeath, Ann. Prob. 8:183 (1980); Z. Wahrsch. Geb. 53:183 (1980). 
20. J. L. Spouge, Phys. Rev. Lett. 60:871 (1988). 
21. H. Takayasu, I. Nishikawa, and H. Tasaki, Phys. Rev, A 37:3110 (1988). 
22. L. W. Anacker and R. Kopelman, J. Chem. Phys. 81:6402 (1984). 
23. M. A. Burschka, unpublished. 
24. N. G. van Kampen, Int. J. Quantum Chem., Quantum Chem. Symp. 16:101 (1982). 
25. L. Peliti, J. Phys. A 19:L365 (1985). 
26. D. C. Torney and H. M. McConnell, Proc. R. Soe. Lond. A 387:147 (1983). 
27. A. A. Lushnikov, Phys. Lett. A 120:135 (1987). 
28. Z. Rficz, Phys. Rev. Lett. 55:1707 (1985). 
29. J. C. Lin, C. R. Doering, and D. ben-Avraham, Joint density closure schemes for a 

diffusion-limited reaction, Chemical Phys., in press (1990). 



728 b e n - A v r a h a m e t  al. 

30. M. A. Burschaka, J. Stat. Phys. 45:715 (1986). 
31. C. R. Doering and M. A. Burschka, Phys. Rev. Lett. 64:245 (1990). 
32. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics (Springer, 

1988); P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Integral and Inertial 
Manifolds for Dissipative Partial Differential Equations (Springer, 1989). 

33. W. Horsthemke and R. Lefever, Noise Induced Transitions (Springer, 1984). 
34. C. R. Doering, H. R. Brand, and R. E. Ecke, eds., Proceedings of the workshop on 

external noise and its interaction with spatial degrees of freedom in nonlinear dissipative 
systems, J. Stat. Phys. 54(5/6) (1989). 


